Cardy-Verlinde Formula and Kerr-Newman-AdS4 and two rotation parameters Kerr-AdS5 black holes

نویسندگان

  • Jiliang Jing
  • Erik Verlinde
چکیده

The Cardy-Verlinde formula, which expresses the entropy of the conformal field theory in terms of its total energy (or the extensive energy), Casimir energy and radius of the unit sphere S, is further verified by using the Kerr-Newman-AdS4 and the two rotation parameters Kerr-AdS5 black holes. For the Kerr-Newman-AdS4 black hole we find that to cast the entropy of the conformal field theory into the Cardy-Verlinde formula the energies n ( JΩH + QΦ 2 + QΦ0 2 ) , which relate to rotational and electric potential energies, must be subtracted from the Casimir energy, and the electric potential energy QΦ0 2 from the total energy. On the other hand, we show that for the two parameters Kerr-AdS5 black hole the standard Cardy-Verlinde formula holds if we subtract the rotation energy n ∑ i JiΩi from the Casimir energy. The result for the case of the Kerr-AdS5 black hole may be extended to higher dimensional Kerr-AdS black holes with multi-rotation-parameters since it is valid for the Kerr-AdSn black holes with one or two rotation parameters. PACS numbers: 04.70.Dy, 04.20.-q, 97.60.Lf. Typeset using REVTEX email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardy-Verlinde Formula and Kerr-Newman-AdS4 and Kerr-Newman-dS4 black holes

The Cardy-Verlinde formula, which expresses the entropy of the conformal field theory in terms of its total energy (or the extensive energy), Casimir energy and radius of the unit sphere S, is further verified by using the KerrNewman-AdS4 and Kerr-Newman-dS4 black holes. For the Kerr-NewmanAdS4 black hole, we find that to cast the entropy of the conformal field theory into the Cardy-Verlinde fo...

متن کامل

Cardy-Verlinde Formula and entropy bounds in Kerr-Newman-AdS4/dS4 black holes backgrounds

The Cardy-Verlinde formula is further verified by using the Kerr-NewmanAdS4 and Kerr-Newman-dS4 black holes. In the Kerr-Newman-AdS4 spacetime, we find that, for strongly coupled CFTs with AdS duals, to cast the entropy of the CFT into the Cardy-Verlinde formula the Casimir energy must contains the terms −n ( JΩH + QΦ 2 + QΦ0 2 ) , which associate with rotational and electric potential energies...

متن کامل

Cardy-Verlinde Formula and asymptotically flat rotating Charged black holes

The Cardy-Verlinde formula is generalized to the asymptotically flat rotating charged black holes in the Einstein-Maxwell theory and low-energy effective field theory describing string by using some typical spacetimes, such as the Kerr-Newman, Einstein-Maxwell-dilaton-axion, Kaluza-Klein, and Sen black holes. For the Kerr-Newman black hole, the definition of the Casimir energy takes the same fo...

متن کامل

0 v 1 1 M ay 2 00 4 The Cardy - Verlinde formula and entropy of black holes in de Sitter spaces

In this paper we show that the entropy of a cosmological horizon in topological Reissner-Nordström-de Sitter and Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimension. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verl...

متن کامل

Cardy-Verlinde Formula and AdS Black Holes

In a recent paper hep-th/0008140 by E. Verlinde, an interesting formula has been put forward, which relates the entropy of a conformal formal field in arbitrary dimensions to its total energy and Casimir energy. This formula has been shown to hold for the conformal field theories that have AdS duals in the cases of AdS Schwarzschild black holes and AdS Kerr black holes. In this paper we further...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002